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Control of local relaxation behavior in closed bipartite quantum systems
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We investigate the decoherence of a spin-1/2 subsystem weakly coupled to an environment of many spins-
1/2 with and without mutual coupling. The total system is closed, its state is pure, and evolves under
Schrodinger dynamics. Nevertheless, the considered spin typically reaches a quasistationary equilibrium state.
Here we show that this state depends strongly on the coupling to the environment on the one hand and on the
coupling within the environmental spins on the other. In particular we focus on spin star and spin ring-star
geometries to investigate the effect of intra-environmental coupling on the central spin. By changing the
spectrum of the environment, its effect as a bath on the central spin is also changed and may even be adjustable
to some degree. We find that the relaxation behavior is related to the distribution of the energy eigenstates of
the total system. For each of these relaxation modes, there is a dual mode for which the resulting subsystem
approaches an inverted state occupation probability (negative temperature).
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I. INTRODUCTION

In a composite but closed quantum system in which a
smaller “central system” is weakly coupled to a larger “en-
vironment,” most of the (pure) states of the total system for a
given energy (and possibly some additional constraints) ex-
hibit properties of thermal equilibrium states with respect to
the smaller part [2,1], i.e., there exists a so-called dominant
region in Hilbert space in which the entropy of the central
system is close to its maximum value under the given con-
straints. For a completely “unstructured” coupling to the en-
vironment, the state of the central system, starting away from
equilibrium, shows decoherence and thermalization and, ul-
timately, a quasistationary equilibrium situation is reached
that is determined only by the spectrum of the environment
[3].

In this paper, we investigate to what extent structured sys-
tems will also exhibit this thermalization behavior. We focus,
in particular, on a single central spin-1/2 particle coupled to
a relatively small environment of spin-1/2 particles. Re-
cently, the properties of spin systems of different structure
(rings, stars, and others) have been a subject of extensive
interest. A lot of work has been done on the question of
entanglement [4-9], their relaxation behavior has been ad-
dressed [10,11], and various techniques were suggested to
make any spin interact with any other spin [12,13].

Here we show that by choosing different types of cou-
pling between the central system and the environment on the
one hand and within the environment on the other, the equi-
librium state finally reached can be controlled. There is, in
particular, a qualitative difference between the relaxation dy-
namics and the equilibrium of the central spin for interacting
and noninteracting environments. We relate this equilibrium
to the spectral structure of the total system.
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II. SPECTRAL TEMPERATURE

Consider a weakly coupled bipartite quantum system con-
sisting of a small system S and a large “container” or envi-
ronment C with the Hamiltonian

(aH™) < (H)(HS). (1)

The behavior of the system is completely described by a
Hilbert space vector |¢Af)) and its evolution under the
Schrodinger equation. Under weak constraints, the state of S
after relaxation is determined by Jaynes’ principle, taking
energy as the only relevant observable [1,2]. The temperature
of the respective canonical state can be predicted from the
degeneracy structure of the environment alone.

Figure 1(a) shows a two-level system in resonant contact
with an environment consisting of two “energy bands” k, k’
of degeneracies g; and g;s, respectively, (g;,g>1) in a
nonequilibrium (initial) state. In equilibrium, the state of the
total system is expected to be distributed homogeneously
over the whole Hilbert space on average, the time-averaged
reduced state operator of S is thus given by [2]

1
S
p =
&kt

H=HS+HC + aH™,

(g[0XO] + g4l 1X(1)), ()

8k’

which can be interpreted as a canonical state operator with
inverse temperature

B=——=—Ih—. 3)

In general, the inverse equilibrium temperature imparted on
S for participating energy levels E of the environment C can
be defined as the derivative of the logarithm of the degen-
eracy g©(E) with respect to energy, as

g Ol E]

E (4)

Note that this is a spectral property only and does not imply
that the environment was in a thermal state; in fact, under the
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FIG. 1. Two-level system S in contact with environment C con-
sisting of two highly degenerate levels k, k' with degeneracies g,
and g, respectively. (a) Resonance (8°=4C), showing the state
[1)S @ |k,m)C for which S evolves into a thermal state. (b) Slightly
detuned energy splitting between S and C: Population relaxation in
S is prohibited by energy conservation, C no longer acts as an
effective heat bath.

condition of Schrodinger dynamics for the total system, it is
far away from such a state.

If the degeneracy of environmental states increases expo-
nentially with energy, 8% is independent of the initial state of
the total system (S+C). In this case also, systems S of
higher-dimensional Hilbert space will evolve into canonical
states.

Equations (2)—(4) are valid only if energy exchange be-
tween S and C is possible, i.e., if transitions in both sub-
systems are in resonance. Under more general conditions, it
is far from clear what numbers should count as the pertinent
degeneracies g;. One may expect that the action of the envi-
ronment as an effective heat bath could even be turned on
and off by tuning the level splitting in either system as
shown in Fig. 1(b). In case of entirely detuned transitions the
environment would still induce decoherence, i.e., phase re-
laxation in S, thus effectively acting as a microcanonical
environment.

At first glance, one would expect both parts of the system
to be in resonance if the detuning |8°— 6% was smaller than
the width of the involved bands in C, i.e., at best it should be
zero. However, if the free Hamiltonian of S is renormalized
by the environment, it is possible that the transitions within
the central system and the environment become somewhat
off resonant as the detuning vanishes. In this paper we focus
on values of the detuning with maximal overlap, i.e., we
choose &°— & such that the equilibrium state was as close as
possible to the expected one from Eq. (3). However, for part
of the following discussion, the precise value of the detuning
is not very important, and &° could have been chosen equal

to &F.
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FIG. 2. Solid line: Inverse equilibrium temperature 85 of S in
units of 5 depending on the involved energy band k of C. Dashed
line: Corresponding population inversion IS in equilibrium. The re-
sults shown are for N=50.

III. CHOICE OF ENVIRONMENTAL SPECTRUM

To use the quantum environment as an effective heat bath
for the central system S with adjustable temperature, though,
the degeneracy of the environment must not scale exponen-
tially with energy. The equilibrium temperature of the sub-
system then depends on the initial state of the environment
via Eq. (4) and can be adjusted by adequately preparing the
initial environmental state. For the equilibrium state of the
system S to be sufficiently independent of its initial state, the
spectral temperature should vary only little over adjacent en-
ergy levels, though.

A possible implementation of these requirements is a de-
generacy varying binomially with energy [14],

N
gk:(k)’ Ei=kd,

where we assume resonance of S with adjacent energy bands
k and k+1, O0<k, k+1=<N. The band splitting &€ will be
taken as a convenient energy scale. For N=50, Fig. 2 shows
the equilibrium temperature of S as a function of the “band
index” k of the environmental initial state and the corre-
sponding population inversion I5=(1|p%|1)—(0|5|0). The in-
version of the state (2) depends on k and is given by

S= <6'z> _ 8k~ 8k+1 .
8kt 8k+1

For sufficiently large N and 0<<k=<N, the temperature 7
1/ varies over a wide range of positive, infinite and even
negative values, although locally, i.e., around a given energy
band, the deviations from an exponential degeneracy-
structure are still small, except for very small or large k.

(5)

IV. SPIN ENVIRONMENTS

An environment consisting of N spin-1/2 particles with
dominant Zeeman terms

P N
HC=—J.+H, J.=2 6
2 v=1
(mutual interaction HCC within C small) has the desired bi-
nomial degeneracy, 6'2”) denotes the Pauli-operator of the vth
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particle. To this environment, we couple the central spin with

the local Hamiltonian I:IS=(5S/ 2)0,.
We will now consider several different types of interac-

tion H™ between S and C. To test whether the system shows

thermalization for a given H™, we study the Schrodinger
time evolution of the initial product state depicted in Fig.
1(a), given by

¥ C(t=0)=|1)%® (6)

where k denotes an energy band in the environment and m
indicates one state within this band. If the coupling is weak

and &=~&C energy conservation restricts the dynamics
mainly to a subspace of Hilbert space dimension
wmnen (1) o
= =+ = +
H= 8kt 8k+l k k+1

spanned by the states |[1)°® and |0)S® [k+1,m")¢
(m=1,2,...,grand m'=1,2,...,g;,1). After a suitable ther-
malization time, the reduced state operator of the central sys-
tem p° should be close to the one given by (2).

The subspace of Hilbert space spanned by the g;+gi.1
state vectors {|1)5® lk+1,m')C} will be called
the “accessible subspace” throughout this paper. Neverthe-
less, other states have to be included, if one is interested in
the off-diagonal elements of the reduced state of S. The ac-
cessible subspace is to be distinguished from the subspace
that is actually “involved” in the dynamics from a given
initial state via Schrodinger time evolution. This “involved”
subspace usually is a subset of the “accessible” one.

A. Random interaction

To test the expectations of Secs. II and III, we first take

H°=0 and H™ as a Hermitian random matrix in the
2M+1_dimensional Hilbert space with a uniform Gaussian dis-
tribution w(H™)=C exp(~ATr{H™}?) [15]. It has been
shown previously [3] that an initial product state evolves into
the desired canonical state under the time evolution gener-
ated by the given Hamiltonian. This is not surprising, since,
in general, the complete information about the environment
being constructed from spin-1/2 particles is lost and energy
remains the only conserved quantity. Most states in the ac-
cessible region of Hilbert space are equilibrium states with
respect to the central system.

Figure 3 shows the time evolution of the z component
(6,)=Tr{6,p5(1)} of the Bloch vector for N=14 particles in C
and initial state (6) with k=2, 8= 6" and very weak coupling
a=6°/5000. The accessible subspace of Hilbert space is of
dimension dy=g,+g3=455. Regardless of the small number
of dimensions, one can observe relaxation to the expected
mean value indicated by the horizontal line. The average
over all times

T2
(6,) = lim % f Tr{6,p°(1)}dr

T—e L)1

is (d.)=-0.598 for the simulation of Fig. 3. Considering the
small number of spins this is remarkably, but not unexpect-
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FIG. 3. z component of the Bloch vector of S for initial state (6)
[N=14, k=2, g3= ( 4), g,=(" 4)] and random perturbations as a func-
tion of time ¢. The horlzontal line indicates the expected mean value
B=(6,)=-3/5 [see (5)].

edly, close to the expected average —3/5=-0.6.

A change of the coupling strength « alone affects only the
time scale of the dynamics, provided the coupling stays
weak, since all energy eigenstates of the uncoupled system in
the accessible subspace are degenerate. The detuning can be
changed slightly without disturbing the system qualitatively
as long as the introduced level splitting is considerably
smaller than the interaction energy.

B. Spin-star configuration

The situation is quite different if the interaction is struc-

tured. Neglecting intra-environmental interaction (i.e., HEC
=0), the most general Hamiltonian for coupling the central
spin to each spin in the environment is

A= 2 Z 76 @ ©)

i,j=1 =1

Even highly symmetric realizations of this class like the
Heisenberg XX interaction [16] show dissipation and deco-
herence with respect to S for highly mixed initial states [10].

However, this is no longer true for the pure initial state
(6). Figure 4 shows the time evolution of (d.) of S for N

1
l

. thy

nun,
it 4
jula Byt Lyl

¥
]
2]
~
2]
—
o
—
N
3
—
o
—
Iy
2]

FIG. 4. z-component of the Bloch vector of S for initial state (6)

(N=14,k=2) for two different choices of A": Random two-body
interactions, 6°=1.000 828 (solid line), 6°=0.99925° (dashed
line).
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FIG. 5. z component of the Bloch vector for initial state (6)
(N=14,k=2) with stronger (solid line), weaker (dashed-dotted line)
and without (dashed line) intra-environmental coupling. See the text
for the respective values of 7.

=14 particles in the environment and &=~ §“=5000a. The
coefficients yl(.f’) have been chosen randomly from a normal-
ized Gaussian distribution. Here, oscillations with a signifi-
cantly larger amplitude than in the previous section are ob-
served because a smaller fraction of Hilbert space is involved
in the time evolution. In addition, the time-averaged (d,)
differs considerably from the expected value indicated by the
horizontal line. This average over all times is (d,)
=-0.0976 for the dashed and (J,)=-0.261 for the solid line.

As stated earlier, 5°— &% was chosen to “optimize” the
relaxation behavior with respect to approximating state (2).
Any other value than that used would lead to an average
reduced state of S even further away from the expected one.

C. Ring-star configuration

Now we extend the spin-star model by introducing mutual
interaction of the environmental spins. Next neighbor cou-
pling in the form of the quantum Ising chain,

N
HCC = ),E 6)((”) &(v+l),

v=1

is added to the system discussed in the last section (assuming
periodic boundary conditions, i.e., &iNH) A(l) Figure 5
compares the time evolution of the spin-star model as dis-

cussed in the last section (dashed line, same as dashed line in

Fig. 4) with the same system to which this HEC has been
added (solid line with y=3« and dashed-dotted line with y
=3a/2). The oscillation amplitude is reduced considerably
and the time averaged value is closer to the expected one.
Here we get (6,)=-0.591 for stronger and (d.,)=-0.432 for
weaker additional intra-environmental interaction.

The relaxation dynamics and equilibrium state of S
strongly depend on the coupling within the environment. By
increasing vy from zero the amplitude of the oscillations is
reduced and the average value of (J,) approaches its ex-
pected value. This is explicitly shown in Fig. 6, which also
shows that the precise value of ¢°— 6 is not too important
here. We have found similar behavior for XY- and
Heisenberg-type interactions. Ising-type interaction (4,
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FIG. 6. @ for different values of y. Initial state (6) (N
=14,k=2), &=

® ;) is somewhat different: By carefully adjusting the pa-
rameters, the system approaches an average state close to the
expected one, yet the fluctuations are not decreased consid-
erably. It is important to note that interactions involving &,
change the effective band splitting in the environment so that
the value of the detuning becomes significant and has to be
adjusted accordingly.

One may imagine switching on or off the interaction HCC
or tuning its strength dynamically (via “refocusing” pulses,
see e.g., [17]). In this way the environment would become
adjustable with respect to its effect on the given central spin.
This is a phenomenon that in “classical” thermostatistics
could hardly have been anticipated. Furthermore, this shows
how to control S entirely by a specific modification of its
environment.

Finally, we note that in addition to showing dissipation
(relaxation of the diagonal of p%) superpositions in S are
decohered (the off-diagonal elements are zero on average),
see Fig. 7.

V. SPECTRAL PROPERTIES

Finally, we try to attribute the various types of relaxation
behavior of these bipartite quantum systems to the distribu-
tion of the energy eigenstates in Hilbert space or, more pre-
cisely, to the distribution of certain properties of the energy
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FIG. 7. x and z components of the Bloch vector for an initial
superposition (|0)+|1))/2 of S as functions of time. Solid line:
(), dashed line: (4.).
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FIG. 8. Distribution of the z component of the reduced state
operator corresponding to the energy eigenstates for a completely
random perturbation, as discussed in Sec. IV A, 14 particles in C.

eigenstates. Let |e,) be an energy eigenstate of the total sys-
tem defined by (1). Then

85 = Trc{le, e}

is the corresponding reduced state of S. Since energy conser-
vation restricts the dynamics to some Hilbert subspace as
discussed in Sec. IV (the accessible subspace), we only take
the energy eigenstates of this subspace into account in the
following discussion.

An interesting property of the éf is the z component of
their Bloch vectors N, =Tr{6.8>}. The average of all \_,, of
a given Hamiltonian in the discussed energy band is approxi-
mately given by the expected value for the equilibrium (5).
Figures 8 to 10 show the distributions of the A, for each of
the models (N=14 environmental spins) discussed in the pre-
vious section over the ensemble of the respective random
Hamiltonians. These distributions have been calculated nu-
merically for 100 different randomly chosen realizations of
each model, i.e., 45 500 values in total for 14 environmental
spins (as in Sec. IV).

Figure 8 shows the distribution of the values of \, for the
complete random interaction discussed in Sec. IV A. Be-
cause the eigenvectors of these Hamiltonians are homoge-
neously distributed over the unit sphere in the accessible
subspace, the \. are narrowly peaked around —0.6 [2,18].
Due to the homogeneous distribution of the eigenvectors one
expects most of them to contribute to the dynamics with
approximately equal weight and therefore (d.) is expected to
be close to the average \..

For the spin-star configuration shown in Fig. 9 the situa-
tion is quite different. Although the average over all A, is still
—0.6, there is a strong peak at A,=—1. All the energy eigen-
states corresponding to the region A,~—1 are approximately
product states of the form

e,y = 10)° ® [ )

with some state | )€ of the environment in the excited energy
band (k+1). For the initial condition given by (6), these
states do not contribute to the dynamics, therefore the sub-
space “involved” in the dynamics is only a small fraction of
the “accessible” subspace, leading to larger fluctuations in
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FIG. 9. Distribution of the z component of the reduced state
operator corresponding to the energy eigenstates for the spin-star
configuration discussed in Sec. IV B, 14 particles in C.

the time evolution. In addition, the average A, of the contrib-
uting states is larger than —0.6, therefore the equilibrium
temperature differs from its value for a completely random
perturbation. The fluctuations could be decreased simply by
using a larger environment. However, the average A, of the
contributing energy eigenstates, and therefore also the aver-
age equilibrium state would not be affected.

Note that a corresponding peak for eigenstates of the form
le")=]1)S®|x)C is missing here since these states are not
part of the accessible subspace. Due to the Zeeman-splitting
&5, the mean energies (0, x|H|0, x) and (1, x|H|1, x) are dif-
ferent by approximately &° so that the transition probability
from the initial state to |1, x) is negligible because of energy
conservation.

The shape of the distribution can be changed by introduc-
ing intra-environmental coupling. For the types of interaction
discussed in the previous section, the peak is shifted to larger
values of N, for increasing coupling strength, Figure 10
shows the result for y=3a. The distribution is considerably
broader than in Fig. 8, while the peak is again close to A, =
—0.6 and the “involved” subspace is enlarged. Since no large
fraction of the energy eigenstates is excluded here by the
choice of the initial state, most of the \_ contribute and one
expects (J) to be again close to the average \..

It is therefore possible to relate the equilibrium behavior
of the central system (level population and fluctuations) to

P(Az)

—-0.75 —0.25 0 0.25 0.75

Az

FIG. 10. Distribution of the z component of the reduced state
operator corresponding to the energy eigenstates for the ring-star
configurations discussed in Sec. IV C, 14 particles in C.
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the eigenvector distribution of the total system. The pertinent
features of these distributions, however, remain unclear yet
and are open to further research.

VI. “THERMAL DUALITY:” RELAXATION TO
NEGATIVE TEMPERATURE STATES

For k> N/2, the degeneracy of the environment decreases
with energy, d1In[g®(E)]/JE <0, and therefore C can act as
an environment imparting a negative absolute temperature to
the central spin.

We have shown that the environment leads for the consid-
ered subsystem to Schrodinger relaxation approaching a qua-
sistationary state with positive temperature (for k<<N/2).
These scenarios may be considered as generic, if simplified,
models for what we typically observe in real life. The envi-
ronments with a finite number of states allow also for a dif-
ferent class of relaxation modes: As a typical consequence of
a quantum approach to thermodynamics we find relaxation
towards negative temperature states as we replace the acces-
sible environment band index k by N—k (the relaxation be-
havior of the system is fully symmetrical with respect to the
transformation |s) ® |k,m)— |5) ® [IN—k,m), where 5§ means
logical negation)! Contrary to inversion due to optical pump-
ing, these dual states would be dynamically stable just as
their positive temperature counterparts. Note, again, that the
environment is not a heat bath of negative temperature; in
fact, it is far from any canonical state.

Since the population of the energy levels of S at 7<<0 are
inverted (IS >0), negative temperatures are actually “hotter”
than positive ones. Spin systems and thermodynamics at T’
<0 have been considered before, see, e.g., [19,20]. In this
regime, several statements of thermodynamics, like the sec-
ond law, have to be reformulated.

Here we show relaxation of S to a state of negative abso-
lute temperature. The situation is the same as discussed in
Secs. III and IV, but now we use |0%;k,mC) and [15;k",m")
with k=12=N-2, k'=11=N-3 (instead of k=2, k'=3) as
the accessible subspace for the Schrodinger time evolution
(see Fig. 2).

Figure 11 shows (d,) (#) for a ring-star geometry of the
environment as discussed in Sec. IV C and demonstrated in
Fig. 5. As expected, the time averaged inversion is close now
to 0.6 instead of —0.6. Thus, for environments consisting of
many spins, the regime 7<<0 can naturally be reached for
sufficiently high energy in the environment. In this way, it is
possible to study quantum thermodynamical effects at nega-
tive absolute temperature and possibly even heat conduction
between embedded subsystems at temperatures of different
sign. This “dual” world, although artificial, may contribute to
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FIG. 11. z component of the Bloch vector for the ring-star ge-
ometry of Sec. IV C with initial state (6) (N=14,k=11).

a better understanding of thermal physics based on quantum
mechanics.

VII. CONCLUSION

For the example of a simple subsystem (spin-1/2) weakly
coupled to a spin environment we have shown that the spec-
tral structure of the environment has a strong influence on
the decoherence of the central system. We have compared
the decoherence of the central spin due to random and struc-
tured coupling.

A noninteracting spin environment does not induce relax-
ation into the local thermal state expected from the band
structure, even though energy is the only conserved quantity
(the spectrum of the total system is nondegenerate). In this
case, a majority of energy eigenstates do not constitute linear
combinations of all states permitted by energy conservation,
and therefore the accessible part of Hilbert space is consid-
erably reduced for certain nonequilibrium initial states like
the pure state (6).

By introducing additional mutual coupling within the en-
vironment, thus changing its spectrum, some of the proper-
ties of the completely random perturbation with respect to
relaxation of the central system are restored, provided the
coupling strength is adjusted appropriately. By dynamically
changing this coupling strength, the thermalizing effect of
the environment on the central system should be adjustable.

We have concluded our investigation with some explora-
tions on thermal duality: Negative temperatures of the em-
bedded system appear here as a natural consequence of the
spectral properties of the environment.
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